ALL PUBLICATIONS

For citation analysis and h-index, check my Google Scholar.

188. Cathepsin B Processing Is Required for the In Vivo Efficacy of Albumin−Drug Conjugates.
Bernardim B, Conde J, Hakala T, Becher JB, Canzano M, Vasco AV, Knowles TPJ, Cameron J, BernardesGJL*
Bioconjugate Chem.2024, 35, 132–139.

Featured as an ACS Editors' Choice.

187. Machine Learning Uncovers Natural Product Modulators of the 5-Lipoxygenase Pathway and Facilitates the Elucidation of Their Biological Mechanisms.
Mikutis S, Lawrinowitz S, Kretzer C, Dunsmore L, Sketeris L, Rodrigues T, Werz O, Bernardes GJL
ACS Chem Biol. 2024 19, 217–229

186. A Structure-Guided Approach for the Development of MUC1-Glycopeptide- Based Cancer Vaccines with Predictable Responses
Bermejo IA; Guerreiro A; Eguskiza A; Martínez-Sáez N; Lazaris FS; Asín A; Somovilla VJ; Compañón I; Raju TK; Tadic S; Garrido P; García-Sanmartín J; Mangini V; Grosso AS; Marcelo F; Avenoza A; Busto JH; García-Martín F; Hurtado-Guerrero R; Peregrina JM; Bernardes GJL*; Martínez A*; Fiammengo R*; Corzana F* (*senior co-authors)
JACS Au 2024, 4, 150–163.

185. Design and Evaluation of PROTACs Targeting Acyl Protein Thioesterase 1
Luís A. R. Carvalho LAR; Sousa BB; Zaidman D; Kiely-Collins H, Bernardes GJL*
ChemBioChem 2024, e202300736.

184. Multiplexed Digital Characterization of Misfolded Protein Oligomers via Solid-State Nanopores
Sandler SE; Horne RI; Rocchetti S; Novak R; Hsu NS; Castellana Cruz M; Faidon Brotzakis Z; Gregory RC; Chia S; Bernardes GJL; Keyser UF; Vendruscolo M
J Am Chem Soc. 2023,145, 25776–25788

183. Proximity-Induced Nucleic Acid Degrader (PINAD) Approach to Targeted RNA Degradation Using Small Molecules
Mikutis S*; Rebelo M; Yankova E; Gu M; Tang C; Coelho AR; Yang M; Hazemi ME; Miranda MP; Eleftheriou M; Robertson M; Vassiliou GS; Adams DJ; Simas JP; Corzana F; Schneekloth Jr. JS; Tzelepis K*; Bernardes GJL*
ACS Cent. Sci. 2023, 9, 5, 892–904

182. Expanding Transition Metal-Mediated Bioorthogonal Decaging to Include C–C Bond Cleavage Reactions
TForno GM; Latocheski E; Machado AB; Becher J; Dunsmor L; St. John AL; Oliveira BL; Navo CD; Jiménez-Osés G; Fior R; Domingos JB*; Bernardes GJL*
J. Am. Chem. Soc. 2023, 145, 19, 10790–10799

181. Merging the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-components reaction into a single multicomponent process
Méndez Y; Vasco AV; Ivey G; Dias AL; Gierth P; Sousa BB; Navo CD; Torres-Mozas A; Rodrigues T;
Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2023, e202311186

180. De Novo Human Angiotensin-Converting Enzyme 2 Decoy NL-CVX1 Protects Mice From Severe Disease After Severe Acute Respiratory Syndrome Coronavirus 2 Infection
Rebelo M; Tang C; Coelho AR; Labão-Almeida C; Schneider MM; Tatalick L; Ruivo P; de Miranda MP;
Gomes A; Carvalho T; Walker MJ; Ausserwoeger H; Pedro Simas J; Veldhoen M; Knowles TPJ; Silva
DA; Shoultz D; Bernardes GJL*
J. Infect. Dis. 2023, 228, 723–733

179. Unlocking the Potential of Bio-Based Nitrogen-Rich Furanic Platforms as Biomass Synthons
Gomes RFA*; Gonçalves BMF; Andrade KHS; Sousa BB; Maulide N; Bernardes GJL*, Afonso CAM*
Angew. Chem. Int. Ed. 2023, 62, e202304449 

178. Clinical and pre-clinical utility of click chemistry
Mikutis S; Bernardes GJL*
Cell 2023, 186, 3, 662 - 662.E1

177. A Selective SARS-CoV‑2 Host-Directed Antiviral Targeting Stress Response to Reactive Oxygen Species
Tang C; Coelho AR; Rebelo M; Kiely-Collins H; Carvalho T;  Bernardes GJL*
ACS Cent. Sci. 2023, 9, 1, 109–121

176. Strategies for Conditional Regulation of Proteins
Nadendla K, Simpson CG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL*
JACS Au 2023, 3, 2, 344–357

175. Introducing the 2023 Bioconjugate Chemistry Editorial Team.
Bernardes GJL, Zou P, Dai Z, Lavik E, van Hest J, Zheng G, Quinn N, MacLaughlin CM, Reineke TMTang C; Coelho AR; Rebelo M; Kiely-Collins H; Carvalho T;
Bioconjug Chem. 2023, 34, 279–282

174. Fragment-based computational design of antibodies targeting structured epitopes
Rangel MA; Bedwell A; Costanzi E; Taylor RJ; Russo R; Bernardes GJL; Ricagno S; Frydman J; Vendruscolo M*; Sormanni P*
Sci. Adv. 2022, 8, eabp9540

173. Selective Inhibition of Bruton’s Tyrosine Kinase by a Designed Covalent Ligand Leads to Potent Therapeutic Efficacy in Blood Cancers Relative to Clinically Used Inhibitors
Sousa BB; Almeida CR; Barahona AF; Lopes R; Martins-Logrado A; Cavaco M; Neves V; Carvalho LAR; Labão-Almeida C; Coelho AR; Bento ML; Lopes RMRM; Oliveira BL; Castanho MARB; Neumeister P; Deutsch A; Vladimer GI; Krall N; João C; Corzana F; Seixas JD; Fior R, Bernardes GJL*
ACS Pharmacol. Transl. Sci. 2022, 5, 11, 1156–1168

172. Cysteine-Assisted Click-Chemistry for Proximity-Driven, Site-Specific Acetylation of Histones
Afonso CF; Marques MC; António JPM; Cordeiro C; Gois PMP; Cal PMSD; Bernardes GJL*
Angew. Chem. Int. Ed. 2022, 61, e202208543

Selected as a Hot Paper.

171. π-Clamp-Mediated Homo- and Heterodimerization of Single-Domain Antibodies via Site-Specific Homobifunctional Conjugation
Taylor RJ; Rangel MA; Geeson MB; Sormanni P; Vendruscolo M; Bernardes GJL*
J. Am. Chem. Soc. 2022, 144, 14404–14419

170. The impact of activity-based protein profiling in malaria drug discovery
Carvalho LAR*; Bernardes GJL*
ChemMedChem 2022, 17, e202200174

169. Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination
Dunsmore L; Navo CD; Becher J; Gil de Montes E; Guerreiro A; Hoyt E; Brown L; Zelenay V; Mikutis S; Cooper J; Barbieri I; Lawrinowitz S; Siouve E; Martin E; Ruivo PR; Rodrigues T; da Cruz FP; Werz O; Vassiliou G; Ravn P; Jiménez-Osés G*; Bernardes GJL*
Nat. Chem. 2022, 14, 754–765

168. Platform for orthogonal N-cysteine-specific protein modification enabled by cyclopropenone reagents
Istrate A; Geeson MB; Navo CD; Sousa BB; Marques MC; Taylor RJ; Journeaux T; Oehler SR; Mortensen MR; Deery MJ; Bond AD; Corzana F; Jiménez-Osés G*; Bernardes GJL*
J. Am. Chem. Soc. 2022, 144, 10396–10406

167. Chemical and enzymatic methods for post-translational protein–protein conjugation
Taylor RJ; Geeson MB; Journeaux T; Bernardes GJL*
J. Am. Chem. Soc. 2022, 144, 14404–14419

166. Structural insights into TRPV2 activation by small molecules
Pumroy RA; Protopopova AD; Fricke TC; Lange IU; Haug FM; Nguyen PT; Gallo PN; Sousa BB; Bernardes GJL; Yarov-Yarovoy V; Leffler A; Moiseenkova-Bell VY
Nat. Commun. 2022, 13, 2334

165. Ibrutinib inhibits BMX-dependent endothelial VCAM-1 expression in vitro and pro-atherosclerotic endothelial activation and platelet adhesion in vivo
Kohs TCL; Olson SR; Pang J; Jordan KR; Zheng TJ; Xie A; Hodovan J; Muller M; McArthur C; Johnson J; Sousa BB; Wallisch M; Kievit P; Aslan JE; Seixas JD; Bernardes GJL; Hinds MT; Lindner JR; McCarty OJK; Puy C; Shatzel JJ
Cel. Mol. Bioeng. 2022, 15, 231–243

164. Single mutation on Trastuzumab modulates the stability of antibody-drug conjugates built using acetal-based linkers and thiol-maleimide chemistry
Ferhati X; Jiménez-Moreno E; Hoyt EA; Salluce G; Cabeza-Cabrerizo M; Navo CD: Compañón I; Akkapeddi P; Matos MJ; Salaverri N; Garrido P; Martínez A; Laserna V; Murray TV; Jiménez-Osés G; Ravn P; Bernardes GJL*; Corzana F*
J. Am. Chem. Soc. 2022, 144, 5284–529

163. Retaining the structural integrity of disulfide bonds in diphtheria toxoid carrier protein is crucial for effectiveness of glycoconjugate vaccine candidates
Carboni F; Kitowski A; Sorieul C; Veggi D; Marques MC; Oldrini D; Balducci E; Brogioni B; Del Bino L; Corrado A; Angiolini F; Dello Iacono L; Margarit I; Romano MR; Bernardes GJL*; Adamo R*
Chem Sci., 2022, 13, 2440–2449

162. Transition metal mediated bioorthogonal release
Sabatino V; Unnikrishnan VB; Bernardes GJL*
Chem Catal., 2022, 2, 39–51

161. Controlled in-cell generation of active palladium(0) species for bioorthogonal decaging
Konč J; Sabatino V; Jiménez-Moreno E; Latocheski E; Rodríguez Pérez L; Day J; Domingos JB; Bernardes GJL*
Angew. Chem. Int. Ed. 2022, e202113519

Selected as a Hot Paper.

160. A structural ensemble of a Tau-microtubule complex reveals regulatory Tau phosphorylation and acetylation mechanisms
Faidon Brotzakis Z; Lindstedt PR; Taylor RJ; Rinauro DJ; Gallagher NCT; Bernardes GJL; Vendruscolo M*
ACS Cent. Sci. 2021, 7, 1986−1995

159. Bioorthogonal self-immolative linker based on Grob fragmentation
Ferhati X; Salas-Cubero M; Garrido P; García-Sanmartín J; Guerreiro A; Avenoza A; Busto JH; Peregrina JM; Martínez A; Jiménez-Moreno E*; Bernardes GJL*; Corzana F*
Org. Lett. 2021, 23, 8580−8584

158. Diazaborines are a versatile platform to develop ROS responsive antibody drug conjugates
António JPM; Carvalho JI; André AS: Dias JNR; Aguiar SI; Faustino H; Lopes RMRM; Veiros LF; Bernardes GJL; da Silva FA; Gois PMP*
Angew. Chem. Int. Ed. 2021, 60, 25914–25921

157. A platform for site-specific DNA-antibody bioconjugation by using benzoylacrylic-labelled oligonucleotides
Konč J; Brown J; Whiten DR; Zuo Y; Ravn P; Klenerman D; Bernardes GJL*
Angew. Chem. Int. Ed. 2021, 60, 25905–25913

156. Accelerating reaction rates of biomolecules by using shear stress in artificial capillary systems
Hakala TA; Yates EV; Challa PK; Toprakcioglu Z; Nadendla K; Matak-Vinkovic D; Dobson CM; Martínez R; Corzana F*; Knowles TPJ*; Bernardes GJL*
J. Am. Chem. Soc. 2021, 143, 16401–16410

Highlighted in Chemistry World, “Tiny mechanical forces deform proteins in living systems for faster reactions”; in In The Pipeline, "Pushing Through the Capillaries"; and in Nature Chemical Biology, "Catalysis under stress".

155. Dichloro butendiamides as irreversible site-selective protein conjugation reagent
Laserna V*; Abegg D; Afonso CF; Martin EM; Adibekian A; Ravn P; Corzana F; Bernardes GJL*
Angew. Chem. Int. Ed. 2021, 60, 23750–23755

Selected as a Hot Paper.

154. Combating small-molecule aggregation with machine learning
Lee K; Yang A; Lin Y-C; Reker D; Bernardes GJL; Rodrigues T
Cell. Rep. Phys. Sci. 2021, 2, 100573

153. Arylethynyltrifluoroborate dienophiles for on demand activation of IEDDA reactions
Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G*; Bernardes GJL*
Bioconjugate Chem. 2021, 32, 1812−1822

152. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation

Orellana EA; Liu Q; Yankova E; Pirouz M; De Braekeleer E; Zhang W; Lim J; Aspris D; Sendinc E; Garyfallos DA; Gu M; Ali R; Gutierrez A; Mikutis S; Bernardes GJL; Fischer ES; Bradley A; Vassiliou GS; Slack FJ; Tzelepis K; Gregory RI
Molecular Cell 2021, 81, 3323–3338

Previewed in Molecular Cell 2021, 81, 3243–3245 “m7G tRNA modification reveals new secrets in the translational regulation of cancer development

151. Exploration of long-chain vitamin E metabolites for the discovery of a highly potent, orally effective, and metabolically stable 5-LOX inhibitor that limits inflammation
Neukirch K; Alsabil K; Dinh C-P; Bilancia R; Raasch M; Ville A; Cerqua I; Viault G; Bréard D; Pace S; Temml V; Brunner E; Jordan PM; Marques MC; Loeser K; Gollowitzer A; Permann S; Gerstmeier J; Lorkowski S; Stuppner H; Garscha U; Rodrigues T; Bernardes GJL; Schuster D; Séraphin D; Richomme P; Rossi A; Mosig AS: Roviezzo F; Werz O; Helesbeux J-J; Koeberle A
J. Med. Chem. 2021, 64, 11496–11526

150. Protein conjugation by electrophilic alkynylation using 5-(alkynyl) dibenzothiophenium triflates
Laserna V; Istrate A; Kafuta K; Hakala TA; Knowles TPJ; Alcarazo M*; Bernardes GJL*
Bioconjugate Chem. 2021, 32,1570–1575

149. Allosteric antagonist modulation of TRPV2 by Piperlongumine impairs glioblastoma progression

Conde J; Pumroy RA; Baker C; Rodrigues T; Guerreiro A; Sousa BB; Marques MC; Almeida BP; Lee S; Leites EP; Picard D; Samanta A; Vaz SH; Sieglitz F; Langini M; Remke M; Roque R; Weiss T; Weller M; Liu Y; Han S; Corzana F; Morais VA; Faria CC; Carvalho T; Filippakopoulos P; Snijder B; Barbosa-Morais NL; Moiseenkova-Bell VY; Bernardes GJL
ACS Cent. Sci. 2021, 7, 868–881

148. The role of reversible and irreversible covalent chemistry in targeted protein degradation
Kiely-Collins H; Winter GE; Bernardes GJL*
Cell Chem. Biol. 2021, 28, 952–968
147. Precise protein conjugation technology for the construction of homogenous glycovaccines
Kitowski A; Corzana F; Bernardes GJL*
Drug Discov. Today Technol. 2020, 8, 69–75 

146. Facile installation of post-translational modifications on the Tau protein via chemical mutagenesis

Lindstedt PR; Taylor RJ; Bernardes GJL*; Vendruscolo M* (co-senior authors)
ACS Chem. Neurosci. 2021, 12, 557−561

145. In vivo pretargeting based on cysteine-selective antibody modification with IEDDA bioorthogonal handles for click chemistry
Ferreira VFC; Oliveira BL*; D’Onofrio A; Farinha CM; Gano L; Paulo A; Bernardes GJL*; Mendes F* (co-senior authors)
Bioconjugate Chem. 2021, 32, 121–132

144. Systematic activity maturation of a single-domain antibody with non-canonical amino acids through chemical mutagenesis
Lindstedt PR; Aprile FA; Sormanni P; Rakoto R; Dobson CM; Bernardes GJL*, Vendruscolo M* (*co-senior authors)
Cell Chem. Biol. 2021, 28, 70–77

143. A scalable insect cell-based production process of the human recombinant BMX for in-vitro covalent ligand high-throughput screening
Sousa BB; Sousa MFQ; Marques MC; Seixas JD; Brito JA; Matias PM; Bernardes GJL; Roldão A
Bioprocess Biosyst. Eng. 2021, 44, 209–215

142. Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody
Macías-León J; , Bermejo IA; Asín A; García-García A; Compañón I; Jiménez-Moreno E; Coelho H; Mangini V; Albuquerque IS; Marcelo F; Asensio JL; Bernardes GJL; Joshi HJ; Fiammengo R; Blixt O; Hurtado-Guerrero R; Corzana F
Chem Commun. 2020, 56, 15137–15140

Featured on the front cover

141. meCLICK-Seq, a substrate-hijacking and RNA degradation strategy for the study of RNA methylation
Mikutis S; Gu M; Sendinc E; Hazemi M; Kiely-Collins H; Aspris D; Vassiliou G; Shi Y; Tzelepis K; Bernardes GJL*
ACS Cent. Sci. 2020, 6, 2196−2208

Highlighted in First ReactionsGlobal Detection of RNA Methylation by Click Degradation
Highlighted in C&ENNew system cuts RNA using only small molecules
Featured in the J. Am. Chem. Soc. virtual issue "RNA chemistry"

140. Adaptive Optimization of Chemical Reactions with Minimal Experimental Information
Reker D; Hoyt EA; Bernardes GJL*; Rodrigues T*
Cell Rep. Phys. Sci. 2020, 1, 100247

Highlighted in Chemistry WorldMachine-learning software competes with human experts to optimise organic reactions
Listed in Cell Rep. Phys. Sci. in the “Best of 2020” collection

139. Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide
Henriques P; Dello Iacono L; Gimeno A; Biolchi A; Rosaria Romano M; Ardá A; Bernardes GJL, Jimenez-Barbero J; Berti F; Rappuoli R; Adamo R
Proc. Natl. Acad. Sci. U.S.A 2020, 117, 29795–29802

138. Structural and biophysical insights into the mode of covalent binding of rationally designed potent BMX inhibitors
Seixas JD*; Sousa BB; Marques MC; Guerreiro A; Traquete R; Rodrigues T; Albuquerque IS; Sousa MFQ; Lemos AR; Sousa PMF; Bandeiras TM; Wu D; Doyle SK; Robinson CV; Koehler AN; Corzana F; Matias PM; Bernardes GJL*
RSC Chem. Biol. 2020, 1, 251–262

Highlighted in the 2021 Editors’ Choice collection

137. Serine-Selective Bioconjugation
Vantourout JC; Adusumalli SR; Knouse KW; Flood D; Ramirez A; Padial NM; Istrate A; Maziarz K; deGruyter JN; Merchant RR; Qiao JX; Schmidt MA; Deery MJ; Eastgate MD*; Dawson PE*; Bernardes GJL*; Baran PS*
J. Am. Chem. Soc. 2020, 142, 17236−17242

Highlighted in Synfacts 2021; 17(01): 0092, Serine-selective bioconjugation

136. Sequential dual site-selective protein labelling enabled by lysine modification
Matos MJ; Brown L; Bernardim B; Guerreiro A; Jiménez-Osés G; Bernardes GJL*
Bioorg. Med. Chem. 2020, 20, 115783

135. Tetrazine carbon nanotubes for pre-targeted in vivo ‘click‐to‐release’ bioorthogonal tumour imaging
Li H; Conde J; Guerreiro A; Bernardes GJL*
Angew. Chem. Int. Ed. 2020, 59, 16023–16032

Selected as a Very Important Paper

134. Platinum-triggered bond-cleavage of pentynoyl amide and N-propargyl handles for drug-activation
Oliveira BL; Stenton BJ; Unnikrishnan VB; de Almeida CR; Conde J; Negrão M; Schneider FSS; Cordeiro C; Ferreira MG; Caramori GF; Domingos JB; Fior R; Bernardes GJL*
J. Am. Chem. Soc. 2020, 142, 10869–10880

133. Protein−protein conjugates: Tyrosine delivers
Geeson MB; Bernardes GJL*
ACS Cent. Sci. 2020, 6, 1473−1475

132. Mechanistic insights into transition metal-mediated bioorthogonal uncaging reactions
Latocheski E; Dal Forno GM; Ferreira TM; Oliveira BL; Bernardes GJL; Domingos JB
Chem. Soc. Rev. 2020, 49, 7710–7729

131. Continuous flow reactors from microfluidic compartmentalization of enzymes within inorganic microparticles
Hakala T; Bialas F; Toprakcioglu Z; Bräuer B; Baumann KN; Levin A; Bernardes GJL*; Becker CFW*; Knowles TPJ*
ACS Appl. Mater. Interfaces 2020, 12, 32951–32960

130. Biomimetic peptide self-assembly for functional materials
Levin A; Hakala T; Schnaider L; Bernardes GJL; Gazit E; Knowles TPJ
Nat. Rev. Chem. 2020, 4, 615–634

129. Brain-sparing sympathofacilitators mitigate obesity without adverse cardiovascular effects
Mahú I; Barateiro A; Rial-Pensado E; Martinéz-Sánchez N; Vaz SH; Cal PMSD; Jenkins B; Rodrigues T; Cordeiro C; Costa MF; Mendes R; Seixas E; Pereira MMA; Kubasova N; Gres V; Morris I; Temporão C; Olivares M; Sanz Y; Koulman A; Corzana F; Sebastião AM; López M; Bernardes GJL*; Domingos AI*
Cell Metab. 2020, 31, 1120–1135

Previewed in Cell Metab. 2020, 31, 1043–1045 “A Sympathetic Treatment for Obesity
Highlighted in Nat. Rev. Endocrinol. 2020, 16, 343 “Unravelling novel weight loss mechanisms

128. Precise installation of diazo-tagged side-chains on proteins to enable in vitro and in cell site-specific labeling
Bernardim B; Dunsmore L; Li H; Hocking B; Nuñez-Franco R; Navo CD; Jiménez-Osés G; Burtoloso ACB; Bernardes GJL*
Bioconjugate Chem. 2020, 31, 1604–1610

127. A sweet galactose transfer: Metabolic oligosaccharide engineering as a tool to study glycans in plasmodium infection.
Kitowski A; Bernardes GJL*
ChemBioChem 2020, 21, 2696–2700

126. Alkynyl benzoxazines and dihydroquinazolines as cysteine targeting covalent warheads and their application in identification of selective irreversible kinase inhibitors
McAulay K; Hoyt EA; Thomas M; Schimpl M; Bodnarchuk MS; Lewis HJ; Barratt D; Bhavsar D; Robinson DM; Deery MJ; Ogg D; Bernardes GJL; Ward RA; Waring MJ; Kettle JG
J. Am. Chem. Soc. 2020, 142, 10358–10372

125. Editorial overview: Toward smart medicines
Bernardes GJL*; Rodriguez R
Curr. Opin. Chem. Biol. 2020, 56, A1–A2

124. Synthesis, characterization and photoinduced CO-release by manganese(i) complexes
Amorim AL; Guerreiro A; Glitz VA; Coimbra DF; Bortoluzzi AJ; Caramori GF; Braga AL; Neves A; Bernardes GJL*; Peralta RA*
New J. Chem. 2020, 44, 10892–10901

123. A microfluidic co-flow route for human serum albumin-drug-nanoparticle assembly
Hakala T; Davies SD; Toprakcioglu Z; Bernardim B; Bernardes GJL*; Knowles TPJ*
Chem. Eur. J. 2020, 26, 5965–5969

122. Synthesis, conformational analysis and in vivo assays of an anti-cancer vaccine that features an unnatural antigen based on an sp2-iminosugar fragment
Bermejo IA; Navo CD; Castro-Lopez J; Guerreiro A; Jimenez-Moreno E; Fernández EMS; Martín FG; Hinou H; Nishimura S; Fernández JMG; Mellet CO; Avenoza A; Busto JH; Bernardes GJL; Hurtado-Guerrero R; Peregrina JM; Corzana F
Chem. Sci. 2020, 11, 3996–4006

121. Stable pyrrole-linked bioconjugates through tetrazine-triggered azanorbornadiene fragmentation
Gil de Montes E; Istrate A; Navo CD; Jiménez-Moreno E; Hoyt EA; Corzana FC; Robina I; Jiménez-Osés G; Moreno-Vargas AJ; Bernardes GJL*
Angew. Chem. Int. Ed. 2020, 59, 1329–1334

120. The Antidiabetic Drug Lobeglitazone Has the Potential to Inhibit PTP1B Activity
Rocha RF; Rodrigues T; Menegatti ACO; Bernardes GJL*, Terenzi H
Bioorg. Chem. 2020, 100, 103927–103932

119. Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions
Toprakcioglu Z; Hakala TA; Levin A; Becker CFW; Bernandes GJL; Knowles TPJ
Soft Matter 2020, 16, 3082–3087

118. Proteome-wide survey of cysteine oxidation using a norbornene probe
Alcock LJ; Langini M; Stühler K; Remke M; Perkins MV; Bernardes GJL*; Chalker JM* (*co-senior authors)
ChemBioChem 2020, 21, 1329–1334

117. Machine learning for target discovery in drug development
Rodrigues T; Bernardes GJL*
Curr. Opin. Chem. Biol. 2020, 56, 16–22

116. Enhancement of the anti-aggregation activity of a molecular chaperone using a rationally designed post-translational modification
Lindstedt PR; Aprile FA; Matos MJ; Perni M; Bertoldo JB; Bernardim B; Peter Q; Jiménez-Osés G; Knowles TPJ; Dobson CM; Corzana F; Vendruscolo M; Bernardes GJL*
ACS Cent. Sci. 2019, 5, 1417–1424

115. Evaluation of linker length effects on a BET bromodomain probe
Traquete R; Henderson E; Picaud S; Cal PMSD; Sieglitz F; Rodrigues T; Oliveira R; Filippakopoulos P; Bernardes GJL*
Chem. Commun. 2019, 55, 10128–10131

114. Ethynylbenziodoxolone Reactivity in Cysteine Bioconjugation
Adusumalli SR; Bernardes GJL*
Chem 2019, 5, 1924–1937

113. Overexpression of osmosensitive Ca2+-permeable channel TMEM63B promotes migration in HEK293T cells
Marques MC; Albuquerque IS; Vaz SH; Bernardes GJL*
Biochemistry 2019, 58, 2861–2866

112. Development of a self-immolative linker for tetrazine-triggered release of alcohols in cells
Davies S; Oliveira BL; Bernardes GJL*
Org. Biomol. Chem. 2019, 17, 5727–5730

111. Triaminopyrimidine derivatives as transmembrane HCl transporters
Motloch P; Guerreiro A; Azeredo CQ; Bernardes GJL; Hunter CA; Kocsis I
Org. Biomol. Chem. 2019, 17, 5633–5638

110. Quaternization of vinyl/alkynyl pyridine enables ultrafast cysteine-selective protein modification and charge modulation
Matos MJ; Navo CD; Hakala T; Ferhati X; Guerreiro A; Hartmann D; Bernardim B; Saar KL; Compañón I; Corzana F; Knowles TPJ; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2019, 58, 6640–6644

109. Azabicyclic vinyl sulfones for residue-specific dual protein labelling
Gil de Montes E; Jiménez-Moreno E; Oliveira BL; Navo CD; Cal PMSD; Jiménez-Osés G; Robina I; Moreno-Vargas AJ; Bernardes GJL*
Chem. Sci. 2019, 10, 4515–4522

108. Dissecting celastrol with machine learning to unveil dark pharmacology
Rodrigues T; de Almeida BP; Barbosa-Morais NL; Bernardes GJL*
Chem. Commun. 2019, 55, 6369–6372

107. Natural product-drug conjugates for modulation of TRPV1-expressing tumors
Baker C; Rodrigues T; de Almeida BP; Barbosa-Morais NL; Bernardes GJL*
Bioorg. Med. Chem. 2019, 27, 2531–2536

106. Tetrazine-triggered release of carboxylic-acid-containing molecules for activation of an anti-inflammatory drug
Davies S; Qiao J; Oliveira BL; Navoc CD; Jiménez-Osésc G; Bernardes GJL*
ChemBioChem. 2019, 20, 1541–1546

105. Norbornene probes for the detection of cysteine sulfenic acid in cells
Alcock LJ; Oliveira BL; Deery MJ; Pukala TL; Perkins MV; Bernardes GJL*; Chalker JM
ACS Chem. Biol. 2019, 14, 594−598

104. Synthesis, characterization and biological evaluation of new manganese metal carbonyl compounds that contain sulfur and selenium ligands as a promising new class of CORMs
Amorim AL; Peterle MM; Guerreiro A; Coimbra DF; Heying RS; Caramori GF; Braga AL; Bortoluzzi AJ; Neves A; Bernardes GJL; Peralta RA
Dalton Trans. 2019, 48, 5574–5584

103. Structure-based design of potent tumor-associated antigens: Modulation of peptide presentation by single-atom O/S or O/Se substitutions at the glycosidic linkage
Compañón I; Guerreiro A; Mangini V; Castro-López J; Escudero-Casao M; Avenoza A; Busto JH; Castillón S; Jiménez-Barbero J; Asensio JL; Jiménez-Osés G; Boutureira O; Peregrina JM; Hurtado-Guerrero R; Fiammengo R; Bernardes GJL*; Corzana F
J. Am. Chem. Soc. 2019,141, 4063–4072

102. Contemporary approaches to site-selective protein modification
Hoyt EA; Cal PMSD; Oliveira BL; Bernardes GJL*
Nat. Rev. Chem. 2019,3, 147–171

101. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia
Akkapeddi P; Fragoso R; Hixon JA; Ramalho AS; Oliveira ML; Carvalho T; Gloger A; Matasci M; Corzana F; Durum SK; Neri D; Bernardes GJL*; Barata JT
Leukemia 2019, 33, 2155–2168

100. Computational advances in combating colloidal aggregation in drug discovery
Reker D; Bernardes GJL; Rodrigues T
Nat. Chem. 2019, 11, 402–418

99. A fluorogenic probe for cell surface phosphatidylserine using an intramolecular indicator displacement sensing mechanism
Zwicker V; Oliveira BL; Yeo JH; Fraser ST; Bernardes GJL; New EJ; Jolliffe KA
Angew. Chem. Int. Ed. 2019, 58, 3087–3091

98. De novo design of potent and selective mimics of IL-2 and IL-15 motif
Silva D-A; Yu S; Ulge UY; Spangler JB; Jude KM; Labão-Almeida C; Ali LR; Quijano-Rubio A; Ruterbusch M; Leung I; Biary T; Crowley SJ; Marcos E; Walkey CD; Weitzner BD; Pardo-Avila F; Castellanos J; Carter L; Stewart L; Riddell SR; Pepper M; Bernardes GJL; Dougan M; Garcia KC; Baker D
Nature 2019, 565, 186–191

News & Views Nature 2019, 565, 165–166: “Designer protein delivers signal of choice

97. One-pot stapling of interchain disulfides of antibodies using an isobutylene motif
Sun S; Akkapeddi P; Marques MC; Martínez-Sáez N; Torres VM; Cordeiro C; Boutureira O; Bernardes GJL*
Org. Biomol. Chem. 2019, 17, 2005–2012

96. Efficient and irreversible antibody-cysteine bioconjugation using carbonylacrylic reagents
Bernardim B; Matos MJ; Ferhati X; Compañón I; Guerreiro A; Akkapeddi P; Burtoloso ACB; Jiménez-Osés G; Corzana F; Bernardes GJL*
Nat. Protoc. 2019, 14, 86–99

95. Lysine bioconjugation on native albumin with a sulfonyl acrylate reagent
Matos MJ; Jiménez-Osés G; Bernardes GJL*
Meth. Mol. Biol. 2019, 2033, 25–37

94. Radical-mediated thiol-ene strategy for photoactivation of thiol-containing drugs in cancer cells
Sun S; Oliveira BL; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2018, 57, 15832–15835

93. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor
Rodrigues T; Werner M; Roth J; da Cruz EHG; Marques MC; Akkapeddi P; Lobo SA; Koeberle A; Corzana F; da Silva Júnior EN; Werz O; Bernardes GJL*
Chem. Sci. 2018, 9, 6889–6903

Highlighted in Chemistry World 2018, July 26 “Artificial intelligence seeks out new anticancer drugs

92. Protein engineering through chemical, genetic and computational manipulation
Hamachi I; Bernardes GJL*
Chem. Soc. Rev. 2018, 47, 8977–8979

Themed issue guest editors: Protein engineering

91. Posttranslational chemical mutagenesis: to reveal the role of non-catalytic cysteine residues in pathogenic bacterial phosphatases
Bertoldo JB; Terenzi H; Hüttelmaier S; Bernardes GJL*
Biochemistry 2018, 57, 6144–6152

90. Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution
Mutter NL; Soskine M; Huang G; Albuquerque IS; Bernardes GJL; Maglia G
ACS Chem. Biol. 201813, 3153–3160

89. Bioorthogonal decaging reactions for targeted drug activation
Davies S; Stenton BJ; Bernardes GJL*
Chimia 2018, 72, 771–776

88. Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors
Robke L; Rodrigues T; Schröder P; Foley DJ; Bernardes GJL; Laraia L; Waldmann H
Tetrahedron 2018, 74, 4531–4537

87. A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging
Stenton BJ; Oliveira BL; Matos MJ; Sinatra L; Bernardes GJL*
Chem. Sci. 2018, 9, 4185–4189

86Chemo and regioselective lysine modification on native proteins
Matos MJ; Oliveira BL; Martínez-Sáez N; Guerreiro A; Cal PMSD; Bertoldo J; Maneiro M; Perkins E; Howard J; Deery MJ; Chalker JM; Corzana F; Jiménez-Osés G; Bernardes GJL*
J. Am. Chem. Soc. 2018140, 4004–4017

Highlighted in Chem. Eng. News 2018, 96, 13 “Computer-designed reagent targets lysine for protein modification”; Phys.orgHow to spark a chemical chain reaction”, March 9, 2018

85. Development of antibody-directed therapies: quo vadis?
Rodrigues T; Bernardes GJL*
Angew. Chem. Int. Ed. 2018, 57, 2032–2034

84. Synthesis and biological evaluation of homogeneous thiol-linked NHC*-Au-albumin and -Trastuzumab bioconjugates
Matos MJ; Labão-Almeida C; Sayers C; Dada O; Tacke M; Bernardes GJL*
Chem. Eur. J. 2018, 24, 12250–12253

Special Issue: Young chemists

83. Sustainable polysulfides for oil spill remediation: Repurposing industrial waste for environmental benefit
Worthington MJH; Shearer CJ; Esdaile LJ; Campbell JA; Gibson CT; Legg SK; Yin Y; Lundquist NA; Gascooke JR; Albuquerque IS; Shapter JG; Andersson GG; Lewis DA; Bernardes GJL; Chalker JM
Adv. Sustain. Sys. 2018, 2, 1800024

Highlighted in The Guardian Researchers create super sponge that mops up oil spills

82. A silicon-labelled amino acid suitable for late-stage fluorination and unexpected oxidative cleavage reactions in the preparation of a key intermediate in the Strecker synthesis
Scroggie KR; Alcock LJ; Matos MJ; Bernardes GJL; Perkins MV; Chalker JM
Peptide Science 2018, 110, e24069

81. Site-selective installation of an electrophilic handle on proteins for bioconjugation
Lee B; Sun S; Jiménez-Moreno E; Neves AA; Bernardes GJL*
Bioorg. Med. Chem. 2018, 26, 3060–3064

Invited contribution for special issue to honour Matthew Fuchter

80. Enhanced permeability and binding activity of isobutylene-grafted peptides
Sun S; Compañón I; Martínez-Sáez N; Seixas JD; Omar Boutureira O; Corzana F;
Bernardes GJL*
ChemBioChem 2018, 19, 48–52

79. Norbornene probes for the study of cysteine oxidation
Alcock LJ; Farrell KD; Akol MT; Jones GH; Tierney MM; Kramer HB; Pukala TL; Bernardes GJL; Perkins MV; Chalker JM
Tetrahedron 2018, 74, 1220–1228

78. Chemoselective installation of amine bonds on proteins through aza-Michael ligation
Freedy AM; Matos MJ; Omar Boutureira O; Corzana F; Guerreiro A; Somovilla VJ; Rodrigues T; Nicholls K; Xie B; Jiménez-Osés G; Brindle KM; Neves AA; Bernardes GJL*

J. Am. Chem. Soc. 2017139, 18365–18375

77. The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer
Somovilla VJ; Bermejo IA; Albuquerque IS; Martínez-Sáez N; Castro-López J; García-Martín F; Compañón I; Hinou H; Nishimura S-I; Jiménez-Barbero J; Asensio JL; Avenoza A; Busto JH; Hurtado-Guerrero R; Peregrina JM; Bernardes GJL*; Corzana F

J. Am. Chem. Soc. 2018, 139, 18255–18261

Featured in Spotlights J. Am. Chem. Soc. 2018, 140, 1

76. Oxetane grafts site-selectively installed on native disulfides enhance protein stability and activity in vivo
Martínez-Sáez N; Sun S; Oldrini D; Sormanni P; Boutureira O; Carboni F; Compañón I; Deery MJ; Vendruscolo M; Corzana F; Adamo R; Bernardes GJL*
Angew. Chem. Int. Ed. 201747, 14963–14967

Article recommended in F1000Prime, 04 Oct 2017

75. Post-expression regioselective mutagenesis reveals a water-bridged cysteine–cysteine redox regulation mechanism in bacterial protein tyrosine phosphatases
Bertoldo JB; Rodrigues T; Dunsmore L; Aprile FA; Marques MC; Rosado L; Boutureira O; Steinbrecher TB; Sherman W; Corzana F; Terenzi H; Bernardes GJL*
Chem 2017, 3, 665–677

74. Oxidative activation of C–S bonds with an electropositive nitrogen promoter enables orthogonal glycosylation of alkyl over phenyl thioglycosides
Kitowski A; Jiménez-Moreno E; Salvadó M; Mestre J; Castillón S; Jiménez-Osés G; Boutureira O; Bernardes GJL*
Org. Lett. 2017, 19, 5490–5493

73. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR
Li R; Rajan R; Wong WCV; Reid DG; Duer MJ; Somovilla VJ; Martinez-Saez N; Bernardes GJL; Hayward R; Shanahan M
Chem. Commun. 2017100, 13275–13380

72. Nickel-catalyzed azide-alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles in air and water
Kim WG; Kang ME; Lee JB; Jeon MH; Lee S; Lee J; Choi B; Cal PMSD; Kang S; Kee Jung-Min; Bernardes GJL; Rohde Jan-Uwe; Choe W; Hong SY
J. Am. Chem. Soc. 2017, 139, 12121–12124

71. Laying waste to mercury: Inexpensive sorbents made from sulfur and recycled cooking oils
Worthington MJH; Kucera RL; Albuquerque IS; Gibson CT; Sibley A; Slattery AD; Campbell JA; Alboaiji SFK; Muller KA; Young J; Adamson N; Gascooke JR; Jampaiah D; Sabri YM; Bhargava SK; Ippolito SJ; Lewis DA; Quinton JS; Ellis AV; Johs A; Bernardes GJL, Chalker JM
Chem. Eur. J. 201723, 16219–16230

Selected as a Hot Paper
Highlighted in Nature, August 2017

70. Inverse electron demand Diels–Alder reactions in chemical biology
Oliveira BL; Guo Z; Bernardes GJL*
Chem. Soc. Rev2017, 46, 4895–4950

69. Site-selective modification of proteins with oxetanes
Boutureira O; Martínez-Sáez N; Brindle KM; Neves AA; Corzana F; Bernardes GJL*
Chem. Eur. J. 2017, 23, 6483–6489

Featured on a Frontispiece

68. Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(II) catalyst
Kwan TT-L; Boutureira O; Frye EC; Gupta MK; Wallace S; Wu Y; Zhang F; Sore HF; Galloway WRJD; Chin JW; Welch M; Bernardes GJL*; Spring DR
Chem. Sci. 20178, 3871–3878

67. A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages
Pereira MMA; Mahú I; Seixas E; Martinéz-Sánchez N; Kubasova N; Pirzgalska RM; Cohen P; López M; Bernardes GJL*; Domingos AI
Nat. Commun. 2017, 8, 14967

66. Vinyl ether–tetrazine pair for the traceless release of alcohols in cells
Jiménez-Moreno E; Guo Z; Oliveira BL; Albuquerque IS; Kitowski A; Guerreiro A; Boutureira O; Rodrigues T; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2017, 56, 243–247

65. Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells
Cal PMSD; Sieglitz F; Santos FMF; Carvalho CP; Guerreiro A; Bertoldo JB; Pischel U; Gois PMP; Bernardes GJL*
Chem. Commun. 201753, 368–371

64. Trends in therapeutic drug conjugates for bacterial diseases: a patent review
Cal PMSD; Matos MJ; Bernardes GJL*
Expert Opin. Ther. Pat. 2016, 27, 179–189

63. Antibody-drug conjugates: The missing link
Rodrigues T; Bernardes GJL*
Nat. Chem. 2016, 8, 1088–1090

62. A minimal, unstrained S-allyl handle for pre-targeting Diels–Alder bioorthogonal labelling in live cells
Oliveira BL, Guo Z; Boutureira O; Guerreiro A; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2016, 55, 14683–14687

61. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents
Bernardim B; Cal PMSD; Matos MJ; Oliveira BL; Martínez-Sáez N; Albuquerque IS; Corzana F; Burtoloso ACB; Jiménez-Osés G; Bernardes GJL*
Nat. Commun. 2016, 7, 13128

60. Bioorthogonal strategy for bioprocessing of specific-site-functionalized enveloped influenza-virus-like particles
Carvalho SB; Freire JM; Moleirinho MG; Monteiro F; Gaspar DMD; Castanho MARB; Carrondo MJT; Alves PMA; Bernardes GJL*; Peixoto C
Bioconjugate Chem. 2016, 27, 2386–2399

59. Unveiling (-)-Englerin A as a modulator of L-type calcium channels
Rodrigues T; Sieglitz F; Somovilla VJ; Cal PMSD; Galione A; Corzana F; Bernardes GJL*
Angew. Chem. Int. Ed. 2016, 55, 11077–11081

58. Tn antigen mimics based on sp2-iminosugars with affinity for an anti-MUC1 antibody
Fernández EMS; Navo CD; Martínez-Sáez N; Gonçalves-Pereira R; Somovilla VJ; Avenoza A; Busto JH; Bernardes GJL; Jiménez-Osés G; Corzana F; García Fernández JM; Mellet CO; Peregrina JM
Org. Lett. 2016, 18, 3890–3893

57. Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation
Faustino H; Silva MJSA; Veiros LF; Bernardes GJL; Gois PMP
Chem. Sci. 2016, 7, 5052–5058

56. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents
Rodrigues T; Sieglitz F; Bernardes GJL*
Chem. Soc. Rev. 2016, 45, 6130–6137

Emerging Investigators Issue 2016
See contributors’ profile in : Chem. Soc. Rev. 2016, 45, 6089–6092

55. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry
Akkapeddi P; Azizi S-A; Freedy A; Cal PMSD; Gois PMP; Bernardes GJL*
Chem. Sci. 2016, 7, 2954–2963

54. Urban endocrine disruptors targeting breast cancer proteins
Montes-Grajales D; Bernardes GJL*; Olivero-Verbel JT
Chem. Res. Toxicol. 2016, 29, 150–161

53. Site-selective protein-modification chemistry for basic biology and drug development
Krall N; da Cruz FP; Boutureira O; Bernardes GJL*
Nat. Chem. 2016, 8, 103–113

Highlighted in Nat. Chem. 2016, 8, 91

52. Sulfur-limonene polysulfide: A material synthesized entirely from industrial waste and its use in removing toxic metals from water and soil
Crockett MP; Evans AM; Worthington MJH; Albuquerque IS; Slattery AD; Gibson CT; Bernardes GJL, Chalker JM
Angew. Chem. Int. Ed. 2016, 55, 1714–1718

Selected as a Hot Paper.
Highlighted in Chem. Eng. News, November 2, 2015

51. An N-acetyl cysteine ruthenium tricarbonyl conjugate enables simultaneous release of CO and ablation of ROS species
Seixas JD; Chaves-Ferreira M; Montes-Grajales D; Gonçalves AM; Marques AR; Saraiva LM; Olivero-Verbel J; Romão CC; Bernardes GJL*
Chem. Eur. J. 2015, 21, 14708–14712

Selected as a Hot Paper

50. An artificial CO-releasing metalloprotein built by histidine-selective metallation
Albuquerque IS; Jeremias HF; Chaves-Ferreira M; Matak-Vinkovic D; Boutureira O; Romão CC; Bernardes GJL*
Chem. Commun. 2015, 51, 3993–3996

49. Advances in chemical protein modification
Boutureira O; Bernardes GJL*
Chem. Rev. 2015, 115, 2174–2195

48. Spontaneous CO release from RuII(CO)2-protein complexes in aqueous solution, cells and mice
Ferreira MC; Albuquerque IS; Matak-Vinkovic D; Coelho AC; Carvalho SM; Saraiva LM; Romão CC; Bernardes GJL*
Angew. Chem. Int. Ed. 2015, 54, 1172–1175

47. Collagen labelling with an azide-proline chemical reporter in live cells
Amgarten B; Rajan R; Martínez-Sáez N; Oliveira BL; Albuquerque IS; Reid DG; Brooks RA; Duer MJ; Bernardes GJL*
Chem. Commun. 2015, 51, 5250–5252

Emerging Investigators Issue 2015

46. Synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins
Salvadó M; Amgarten B; Castillón S; Bernardes GJL*; Boutureira O
Org. Lett. 2015, 17, 2836–2839

45. Deciphering the non‐equivalence of serine and threonine O‐glycosylation points: Implications for molecular recognition of the Tn antigen by an anti‐MUC1 antibody
Martínez-Sáez N; Castro-López J; Valero-González J, Madariaga D; Compañón I; Somovilla VJ; Salvadó M; Asensio JL; Jiménez-Barbero J; Avenoza A; Busto JH; Bernardes GJL; Peregrina JM; Hurtado-Guerrero R; Corzana F
Angew. Chem. Int. Ed. 2015, 54, 9830–9834

44. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation
Lira-Navarrete E; de las Rivas M; Compañón I; Pallarés MC; Kong Y; Iglesias-Fernández J; Bernardes GJL; Peregrina JM; Rovira C; Bernadó P; Bruscolini P; Clausen H; Lostao A; Corzana F; Hurtado-Guerrero R
Nat. Commun. 2015, 6, 6937

43. Peptide anchor for folate-targeted liposomal delivery
Nogueira E; Mangialavori IC; Loureiro A; Azoia NG; Sárria MP; Nogueira P; Freitas J; Härmark J; Shimanovich U; Rollett A; Lacroix G; Bernardes GJL, Guebitz GM; Herbert H; Moreira A; Carmo AM; Rossi JPFC; Gomes AC; Preto A; Cavaco-Paulo A
Biomacromolecules 2015, 16, 2904–2910

42. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells
Loureiro A; Nogueira E; Azoia NG; Sárria MP; Abreu AS; Shimanovich U; Rollet A; Härmark J; Hebert H; Guebitz G; Bernardes GJL; Preto A; Gomes AC; Cavaco-Paulo A
Colloids Surf. B 2015, 135, 90–98

41. Enhancing methotrexate tolerance with folate tagged liposomes in arthritic mice
Nogueira E; Lager F; Le Roux D; Nogueira P; Freitas J; Charvet C; Renault G; Loureiro A; Almeida CR; Ohradanova-Repic A; Machacek C; Bernardes GJL; Moreira A; Stockinger H; Burnet M; Carmo AM; Gomes AC; Preto A; Bismuth G; Cavaco-Paulo A
Biomed. Nanotechnol. 2015, 11, 2243–2252

40. Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors
Loureiro A; Bernardes GJL*; Shimanovich U; Sárria MP; Nogueira E; Preto A; Gomes AC; Cavaco-Paulo A
Nanomedicine 2015, 11, 1077–1083

39. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO
Seixas JD; Santos MFA; Mukhopadhyay A; Coelho AC; Reis PM; Veiros LF; Marques AR; Penacho N; Gonçalves AML; Romão MJ; Bernardes GJL; Santos-Silva, T; Romão CC
Dalton Trans. 2015, 44, 5058–5075

38. Functionalized protein nanoemulsions by incorporation of chemically modified BSA
Loureiro A; Abreu AS; Sárria MP; Figueiredo MCO; Saraiva LM; Bernardes GJL; Gomes AC; Cavaco-Paulo A
RSC Adv. 2015, 5, 4976–4983

37. Highlights from the 49th EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2014
Bernardes GJL*; Lawrence AL
Chem. Commun. 2014, 50, 10752–10757

36. Cysteine selective reactions for antibody conjugation
Cal PMSD; Bernardes GJL*; Gois PMP
Angew. Chem. Int. Ed. 2014, 53, 10585–10587

35. Carbon-monoxide releasing molecules for the delivery of therapeutic CO in vivo
García-Gallego S; Bernardes GJL*
Angew. Chem. Int. Ed. 2014, 53, 9712–9721

34. Protein micro and nano capsules for biomedical applications
Shimanovich U; Bernardes GJL*, Knowles TJ; Cavaco-Paulo A
Chem. Soc. Rev. 2014, 43, 1361–1371

33. Highlights from the 48th EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2013
Bernardes GJL*
Chem. Commun. 2013, 49, 8578–8582

32. Synthetically defined glycoprotein vaccines: Current status and future directions
Adamo D; Nilo A; Castagner B; Boutureira O; Berti F; Bernardes GJL*
Chem. Sci. 2013, 4, 2995–3008

EMBO Fellowhip with Prof. Dario Neri

31. A small molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors
Krall N; Pretto, F; Decurtins W; Bernardes GJL; Supuran CT; Neri D
Angew. Chem. Int. Ed. 2014, 53, 4231–4235

30. Curative properties of non-internalizing antibody-drug conjugates based on Maytansinoids
Perrino E; Steiner M; Krall N; Bernardes GJL; Pretto F; Casi G; Neri D
Cancer Res. 2014, 74, 2569–2578

29. Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature
Steiner M; Hartmann I; Perrino E; Casi G; Brighton S; Jelesarov I; Bernardes GJL*; Neri D
Chem. Sci. 2013, 4, 297–302

28. Site-specific chemical modification of antibody fragments with traceless cleavable linkers
Bernardes GJL; Steiner M; Hartmann I; Neri D; Casi G
Nat. Protoc. 2013, 8, 2079–2089

27. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format”
Zuberbühler K; Casi G; Bernardes GJL; Neri D
Chem. Commun. 2012, 48, 7100–7102

26. A traceless vascular targeting antibody-drug conjugate for cancer therapy
Bernardes GJL; Casi G; Trüssel S; Hartmann I; Schwager K; Scheuermann J; Neri D
Angew. Chem. Int. Ed. 2012, 51, 941–944

Very Important Paper (VIP).
Highlighted in Chimia 2012, 66, 130; ETH Life – “Starving Cancer”

Group Leader at Alfama Lta.

25. Generation of liver specific carbon monoxide-releasing molecule (CO-RM) as drug candidates for the treatment of acute liver injury: targeting of CO-RMs to the liver
Marques AR; Kromer L; Gallo DJ; Penacho NM; Rodrigues SS; Seixas JD; Bernardes GJL; Reis PM; Otterbein SL; Ruggieri RA; Gonçalves ASG; Gonçalves AML; De Matos MN; Bento I; Otterbein LE; Blättler WA; Romão CC
Organometallics 2012, 31, 5810–5822

24. Developing drug molecules for therapy with carbon monoxide
Romão CC; Seixas JD; Blättler WA; Bernardes GJL*
Chem. Soc. Rev. 2012, 41, 3571–3583

23. A novel CO-releasing molecule fully protects mice from severe malaria
Pena AC; Penacho N; Mancio da Silva L; Neres R; Seixas JD; Fernandes AC; Romão CC; Mota MM; Bernardes GJL*; Pamplona A
Antimicrob. Agents Chemother. 2012, 56, 1281–1290

22. Towards improved therapeutic CORMs: Understanting the reactivity of CORM-3 with proteins
Santos-Silva T; Mukhopadkyay A; Seixas JD; Bernardes GJL; Romão CR; Romão MJ
Curr. Med. Chem. 2011, 18, 3361–3366

21. CORM-3 reactivity towards proteins: The crystal structure of a Ru(II) dicarbonyl-lysosyme complex
Santos-Silva T; Mukhopadkyay A; Seixas JD; Bernardes GJL*; Romão CR; Romão MJ
J. Am. Chem. Soc. 2011, 133, 1192–1195

Marie-Curie Fellowship with Prof. Peter Seeberger

20. Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting
Bernardes GJL; Kikkeri R; Maglinao M; Laurino P; Collot M; Hong SY; Lepenies B; Seeberger PH
Org. Biomol. Chem. 2010, 8, 4987–4996

19. Combined approaches to the synthesis and study of glycoproteins
Bernardes GJL; Castagner B; Seeberger PH
ACS Chem. Biol. 2009, 4, 703–713

D.Phil. with Prof. Ben Davis

18. Precise probing of residue roles by post-translational β,γ-C,N aza-Michael mutagenesis in enzyme active sites
Dadová J; Wu K-J; Isenegger PG; Errey JC; Bernardes GJL; Chalker JM; Raich K; Rovira C; Davis BG
ACS Cent. Sci. 2017, 3, 1168–1173

17. Post-translational mutagenesis: a chemical strategy for exploration of protein side-chain diversity
Wright TH; Bower BJ; Chalker JM; Bernardes GJL; Wiewiora R; Ng WL; Raj R; Faulkner S; Vallée MRJ; Phanumartwiwath A; Coleman OD; Thézénas ML; Khan M; Galan SRG; Lercher L; Schombs MW; Gerstberger S; Palm-Espling ME; Baldwin MJ; Kessler BM; Claridge TDW; Mohammed S; Davis BG
Science 2016, 354, 597

Highlighted in Science 2016, 354, 553–554; Chem. Eng. News, September 26, 2016Nat. Methods 2016, 13, 907

16. Rationally designed short polyisoprenol-linked PglB substrates for engineered polypeptide N-glycosylation
Liu F; Vijayakrishnan B; Faridmoayer A; Taylor TA; Parsons TB; Bernardes GJL; Kowarik M; Davis BG
J. Am. Chem. Soc. 2014, 15, 566–569

15. SeS-linked homogeneous glycopeptides and glycoproteins: Synthesis of human hepatic ‘Se-metabolite A’
Boutureira O; Bernardes GJL; Fernández-González M; Davis BG
Angew. Chem. Int. Ed. 2012, 51, 1432–1436

14. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars
Boutureira O; Bernardes GJL; D’Hooge F; Davis BG
Chem. Commun. 2011, 47, 10010–10012

13. Methods for the conversion of cysteine to dehydroalanine on peptides and proteins
Chalker JM; Gunnoo SB; Boutureira O; Gerstberger SC; Fernández-González M; Bernardes GJL; Griffin L; Hailu H; Schofield CJ; Davis BG
Chem. Sci. 2011, 2, 1666–1676

12. A “tag-and-modify” approach to site-selective protein modification
Chalker JM; Bernardes GJL; Davis BG
Acc. Chem. Res. 2011, 44, 730–741

11. Site-selective traceless Staudinger ligation for glycoprotein synthesis reveals scope and limitations
Bernardes GJL; Linderoth L; Doores KJ; Boutureira O; Davis BG
ChemBioChem 2011, 12, 1383–1386

10. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates
Grayson EJ; Bernardes GJL; Chalker JM; Boutureira O; Koeppe JR; Davis BG
Angew. Chem. Int. Ed. 2011, 50, 4127–4132

9. Site-selective chemoenzymatic construction of synthetic glycoproteins using endoglycosidases
Fernández-González M; Boutureira O; Bernardes GJL; Chalker JM; Young MA; Errey JC; Davis BG
Chem. Sci. 2010, 1, 709–715

8. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins
Boutureira O; D’Hooge F; Fernández-González M; Bernardes GJL; Sánchez-Navarro M; Koeppe JR; Davis BG
Chem. Commun. 2010, 46, 8142–8144

7. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology
Chalker JM; Bernardes GJL; Lin AY; Davis BG
Chem. Asian J. 2009, 4, 630–640

6. Allyl sulfides are priviliged substrates in aqueous olefin cross-metathesis: Application to site-selective protein modification
Lin AY; Chalker JM; Floyd N; Bernardes GJL; Davis BG
J. Am. Chem. Soc. 2008, 130, 9642–9643

Highlighted in Chem. Eng. News, July 14, 2008; Nat. Chem. Biol. 2008, 4, 527; Chemistry World 2008, 5, 20; Faculty of 1000 Biology

5. Chemical site-selective prenylation of proteins
Gamblin DP; van Kasteren SI; Bernardes GJL; Chalker JM; Oldham NJ; Fairbanks AJ; Davis BG
Mol. BioSyst. 2008, 4, 558–561

4. Facile conversion of cysteine and alkylcysteines to dehydroalanine: Versatile and switchable access to functionalized proteins
Bernardes GJL; Chalker, JM; Errey JC; Davis BG
J. Am. Chem. Soc. 2008, 130, 5052–5053

Highlighted in Nat. Chem. Biol. 2008, 4, 527–528; Chem. Eng. News, March 31, 2008; Chemistry World2008, 5, 20; Chem.Commun. 2008, 6441

3. From disulfide- to thioether-linked glycocoproteins
Bernardes GJL; Grayson EJ; Thompson S; Chalker JM; Errey JC; Oualid FE; Claridge TDW; Davis BG
Angew. Chem. Int. Ed. 2008, 47, 2244–2247

Highlighted in Angew. Chem. Int. Ed. 2008, 47, 5496–5499

2. A trisulfide-linked glycoprotein
Bernardes GJL; Marston JP; Batsanov AS; Howard JAK; Davis BG
Chem. Commun. 2007, 3145–3147

1. The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation
Bernardes GJL; Gamblin DP; Davis BG
Angew. Chem. Int. Ed. 2006, 45, 4007–4011