For citation analysis and h-index, check my Google Scholar.


117. Machine learning for target discovery in drug development
Rodrigues T; Bernardes GJL*
Curr. Opin. Chem. Biol. 2020, 56, 16–22

116. Evaluation of linker length effects on a BET bromodomain probe
Traquete R; Henderson E; Picaud S; Cal PMSD; Sieglitz F; Rodrigues T; Oliveira R; Filippakopoulos P; Bernardes GJL*
Chem. Commun. 2019, 55, 10128–10131

115. Enhancement of the anti-aggregation activity of a molecular chaperone using a rationally designed post-translational modification
Lindstedt PR; Aprile FA; Matos MJ; Perni M; Bertoldo JB; Bernardim B; Peter Q; Jiménez-Osés G; Knowles TPJ; Dobson CM; Corzana F; Vendruscolo M; Bernardes GJL*
ACS Cent. Sci. 2019, 5, 1417–1424


114. Ethynylbenziodoxolone Reactivity in Cysteine Bioconjugation
Adusumalli SR; Bernardes GJL*
Chem 2019, 5, 1924–1937


113. Overexpression of osmosensitive Ca2+-permeable channel TMEM63B promotes migration in HEK293T cells
Marques MC; Albuquerque IS; Vaz SH; Bernardes GJL*
Biochemistry 2019, 58, 2861–2866

112. Development of a self-immolative linker for tetrazine-triggered release of alcohols in cells
Davies S; Oliveira BL; Bernardes GJL*
Org. Biomol. Chem. 2019, 17, 5727–5730

111. Triaminopyrimidine derivatives as transmembrane HCl transporters
Motloch P; Guerreiro A; Azeredo CQ; Bernardes GJL; Hunter CA; Kocsis I
Org. Biomol. Chem. 2019, 17, 5633–5638.

110. Quaternization of vinyl/alkynyl pyridine enables ultrafast cysteine-selective protein modification and charge modulation
Matos MJ; Navo CD; Hakala T; Ferhati X; Guerreiro A; Hartmann D; Bernardim B; Saar KL; Compañón I; Corzana F; Knowles TPJ; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2019, 58, 6640–6644

109. Azabicyclic vinyl sulfones for residue-specific dual protein labelling
Gil de Montes E; Jiménez-Moreno E; Oliveira BL; Navo CD; Cal PMSD; Jiménez-Osés G; Robina I; Moreno-Vargas AJ; Bernardes GJL*
Chem. Sci. 2019, 10, 4515–4522

108. Dissecting celastrol with machine learning to unveil dark pharmacology
Rodrigues T; de Almeida BP; Barbosa-Morais NL; Bernardes GJL*
Chem. Commun. 2019, 55, 6369–6372

107. Natural product-drug conjugates for modulation of TRPV1-expressing tumors
Baker C; Rodrigues T; de Almeida BP; Barbosa-Morais NL; Bernardes GJL*
Bioorg. Med. Chem. 2019, 27, 2531–2536

106. Tetrazine-triggered release of carboxylic-acid-containing molecules for activation of an anti-inflammatory drug
Davies S; Qiao J; Oliveira BL; Navoc CD; Jiménez-Osésc G; Bernardes GJL*
ChemBioChem. 2019, 20, 1541–1546

105. Norbornene probes for the detection of cysteine sulfenic acid in cells
Alcock LJ; Oliveira BL; Deery MJ; Pukala TL; Perkins MV; Bernardes GJL*; Chalker JM
ACS Chem. Biol. 2019, 14, 594−598

104. Synthesis, characterization and biological evaluation of new manganese metal carbonyl compounds that contain sulfur and selenium ligands as a promising new class of CORMs
Amorim AL; Peterle MM; Guerreiro A; Coimbra DF; Heying RS; Caramori GF; Braga AL; Bortoluzzi AJ; Neves A; Bernardes GJL; Peralta RA
Dalton Trans. 2019, 48, 5574–5584

103. Structure-based design of potent tumor-associated antigens: Modulation of peptide presentation by single-atom O/S or O/Se substitutions at the glycosidic linkage
Compañón I; Guerreiro A; Mangini V; Castro-López J; Escudero-Casao M; Avenoza A; Busto JH; Castillón S; Jiménez-Barbero J; Asensio JL; Jiménez-Osés G; Boutureira O; Peregrina JM; Hurtado-Guerrero R; Fiammengo R; Bernardes GJL*; Corzana F
J. Am. Chem. Soc. 2019,141, 4063–4072

102. Contemporary approaches to site-selective protein modification
Hoyt EA; Cal PMSD; Oliveira BL; Bernardes GJL*
Nat. Rev. Chem. 2019,3, 147–171

101. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia
Akkapeddi P; Fragoso R; Hixon JA; Ramalho AS; Oliveira ML; Carvalho T; Gloger A; Matasci M; Corzana F; Durum SK; Neri D; Bernardes GJL*; Barata JT
Leukemia 2019, 33, 2155–2168

100. Computational advances in combating colloidal aggregation in drug discovery
Reker D; Bernardes GJL; Rodrigues T
Nat. Chem. 2019, 11, 402–418

99. A fluorogenic probe for cell surface phosphatidylserine using an intramolecular indicator displacement sensing mechanism
Zwicker V; Oliveira BL; Yeo JH; Fraser ST; Bernardes GJL; New EJ; Jolliffe KA
Angew. Chem. Int. Ed. 2019, 58, 3087–3091

98. De novo design of potent and selective mimics of IL-2 and IL-15 motif
Silva D-A; Yu S; Ulge UY; Spangler JB; Jude KM; Labão-Almeida C; Ali LR; Quijano-Rubio A; Ruterbusch M; Leung I; Biary T; Crowley SJ; Marcos E; Walkey CD; Weitzner BD; Pardo-Avila F; Castellanos J; Carter L; Stewart L; Riddell SR; Pepper M; Bernardes GJL; Dougan M; Garcia KC; Baker D
Nature 2019, 565, 186–191

See also Nature 2019, 565, 165–166: “Designer protein delivers signal of choice

97. One-pot stapling of interchain disulfides of antibodies using an isobutylene motif
Sun S; Akkapeddi P; Marques MC; Martínez-Sáez N; Torres VM; Cordeiro C; Boutureira O; Bernardes GJL*
Org. Biomol. Chem. 2019, 17, 2005–2012

96. Efficient and irreversible antibody-cysteine bioconjugation using carbonylacrylic reagents
Bernardim B; Matos MJ; Ferhati X; Compañón I; Guerreiro A; Akkapeddi P; Burtoloso ACB; Jiménez-Osés G; Corzana F; Bernardes GJL*
Nat. Protoc. 2019, 14, 86–99

95. Lysine bioconjugation on native albumin with a sulfonyl acrylate reagent
Matos MJ; Jiménez-Osés G; Bernardes GJL*
Meth. Mol. Biol. 2019, 2033, 25–37

94. Radical-mediated thiol-ene strategy for photoactivation of thiol-containing drugs in cancer cells
Sun S; Oliveira BL; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2018, 57, 15832–15835

93. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor
Rodrigues T; Werner M; Roth J; da Cruz EHG; Marques MC; Akkapeddi P; Lobo SA; Koeberle A; Corzana F; da Silva Júnior EN; Werz O; Bernardes GJL*
Chem. Sci. 2018, 9, 6889–6903

Highlighted in Chemistry World 2018, July 26 “Artificial intelligence seeks out new anticancer drugs

92. Protein engineering through chemical, genetic and computational manipulation
Hamachi I; Bernardes GJL*
Chem. Soc. Rev. 2018, 47, 8977–8979

Themed issue guest editors: Protein engineering

91. Posttranslational chemical mutagenesis: to reveal the role of non-catalytic cysteine residues in pathogenic bacterial phosphatases
Bertoldo JB; Terenzi H; Hüttelmaier S; Bernardes GJL*
Biochemistry 2018, 57, 6144–6152

90. Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution
Mutter NL; Soskine M; Huang G; Albuquerque IS; Bernardes GJL; Maglia G
ACS Chem. Biol. 201813, 3153–3160

89. Bioorthogonal decaging reactions for targeted drug activation
Davies S; Stenton BJ; Bernardes GJL*
Chimia 2018, 72, 771–776

88. Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors
Robke L; Rodrigues T; Schröder P; Foley DJ; Bernardes GJL; Laraia L; Waldmann H
Tetrahedron 2018, 74, 4531–4537

87. A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging
Stenton BJ; Oliveira BL; Matos MJ; Sinatra L; Bernardes GJL*
Chem. Sci. 2018, 9, 4185–4189

86Chemo and regioselective lysine modification on native proteins
Matos MJ; Oliveira BL; Martínez-Sáez N; Guerreiro A; Cal PMSD; Bertoldo J; Maneiro M; Perkins E; Howard J; Deery MJ; Chalker JM; Corzana F; Jiménez-Osés G; Bernardes GJL*
J. Am. Chem. Soc. 2018140, 4004–4017

Highlighted in Chem. Eng. News 2018, 96, 13 “Computer-designed reagent targets lysine for protein modification”; Phys.orgHow to spark a chemical chain reaction”, March 9, 2018

85. Development of antibody-directed therapies: quo vadis?
Rodrigues T; Bernardes GJL*
Angew. Chem. Int. Ed. 2018, 57, 2032–2034

84. Synthesis and biological evaluation of homogeneous thiol-linked NHC*-Au-albumin and -Trastuzumab bioconjugates
Matos MJ; Labão-Almeida C; Sayers C; Dada O; Tacke M; Bernardes GJL*
Chem. Eur. J. 2018, 24, 12250–12253

Special Issue: Young chemists

83. Sustainable polysulfides for oil spill remediation: Repurposing industrial waste for environmental benefit
Worthington MJH; Shearer CJ; Esdaile LJ; Campbell JA; Gibson CT; Legg SK; Yin Y; Lundquist NA; Gascooke JR; Albuquerque IS; Shapter JG; Andersson GG; Lewis DA; Bernardes GJL; Chalker JM
Adv. Sustain. Sys. 2018, 2, 1800024

Highlighted in The Guardian Researchers create super sponge that mops up oil spills

82. A silicon-labelled amino acid suitable for late-stage fluorination and unexpected oxidative cleavage reactions in the preparation of a key intermediate in the Strecker synthesis
Scroggie KR; Alcock LJ; Matos MJ; Bernardes GJL; Perkins MV; Chalker JM
Peptide Science 2018, 110, e24069

81. Site-selective installation of an electrophilic handle on proteins for bioconjugation
Lee B; Sun S; Jiménez-Moreno E; Neves AA; Bernardes GJL*
Bioorg. Med. Chem. 2018, 26, 3060–3064

Invited contribution for special issue to honour Matthew Fuchter

80. Enhanced permeability and binding activity of isobutylene-grafted peptides
Sun S; Compañón I; Martínez-Sáez N; Seixas JD; Omar Boutureira O; Corzana F;
Bernardes GJL*
ChemBioChem 2018, 19, 48–52

79. Norbornene probes for the study of cysteine oxidation
Alcock LJ; Farrell KD; Akol MT; Jones GH; Tierney MM; Kramer HB; Pukala TL; Bernardes GJL; Perkins MV; Chalker JM
Tetrahedron 2018, 74, 1220–1228

78. Chemoselective installation of amine bonds on proteins through aza-Michael ligation
Freedy AM; Matos MJ; Omar Boutureira O; Corzana F; Guerreiro A; Somovilla VJ; Rodrigues T; Nicholls K; Xie B; Jiménez-Osés G; Brindle KM; Neves AA; Bernardes GJL*

J. Am. Chem. Soc. 2017139, 18365–18375

77. The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer
Somovilla VJ; Bermejo IA; Albuquerque IS; Martínez-Sáez N; Castro-López J; García-Martín F; Compañón I; Hinou H; Nishimura S-I; Jiménez-Barbero J; Asensio JL; Avenoza A; Busto JH; Hurtado-Guerrero R; Peregrina JM; Bernardes GJL*; Corzana F

J. Am. Chem. Soc. 2018, 139, 18255–18261

Featured in Spotlights J. Am. Chem. Soc. 2018, 140, 1

76. Oxetane grafts site-selectively installed on native disulfides enhance protein stability and activity in vivo
Martínez-Sáez N; Sun S; Oldrini D; Sormanni P; Boutureira O; Carboni F; Compañón I; Deery MJ; Vendruscolo M; Corzana F; Adamo R; Bernardes GJL*
Angew. Chem. Int. Ed. 201747, 14963–14967

Article recommended in F1000Prime, 04 Oct 2017

75. Post-expression regioselective mutagenesis reveals a water-bridged cysteine–cysteine redox regulation mechanism in bacterial protein tyrosine phosphatases
Bertoldo JB; Rodrigues T; Dunsmore L; Aprile FA; Marques MC; Rosado L; Boutureira O; Steinbrecher TB; Sherman W; Corzana F; Terenzi H; Bernardes GJL*
Chem 2017, 3, 665–677

74. Oxidative activation of C–S bonds with an electropositive nitrogen promoter enables orthogonal glycosylation of alkyl over phenyl thioglycosides
Kitowski A; Jiménez-Moreno E; Salvadó M; Mestre J; Castillón S; Jiménez-Osés G; Boutureira O; Bernardes GJL*
Org. Lett. 2017, 19, 5490–5493

73. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR
Li R; Rajan R; Wong WCV; Reid DG; Duer MJ; Somovilla VJ; Martinez-Saez N; Bernardes GJL; Hayward R; Shanahan M
Chem. Commun. 2017100, 13275–13380

Featured on the cover

72. Nickel-catalyzed azide-alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles in air and water
Kim WG; Kang ME; Lee JB; Jeon MH; Lee S; Lee J; Choi B; Cal PMSD; Kang S; Kee Jung-Min; Bernardes GJL; Rohde Jan-Uwe; Choe W; Hong SY
J. Am. Chem. Soc. 2017, 139, 12121–12124

71. Laying waste to mercury: Inexpensive sorbents made from sulfur and recycled cooking oils
Worthington MJH; Kucera RL; Albuquerque IS; Gibson CT; Sibley A; Slattery AD; Campbell JA; Alboaiji SFK; Muller KA; Young J; Adamson N; Gascooke JR; Jampaiah D; Sabri YM; Bhargava SK; Ippolito SJ; Lewis DA; Quinton JS; Ellis AV; Johs A; Bernardes GJL, Chalker JM
Chem. Eur. J. 201723, 16219–16230

Selected as a Hot Paper
Highlighted in Nature, August 2017

70. Inverse electron demand Diels–Alder reactions in chemical biology
Oliveira BL; Guo Z; Bernardes GJL*
Chem. Soc. Rev2017, 46, 4895–4950

69. Site-selective modification of proteins with oxetanes
Boutureira O; Martínez-Sáez N; Brindle KM; Neves AA; Corzana F; Bernardes GJL*
Chem. Eur. J. 2017, 23, 6483–6489

Featured on a Frontispiece

68. Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(II) catalyst
Kwan TT-L; Boutureira O; Frye EC; Gupta MK; Wallace S; Wu Y; Zhang F; Sore HF; Galloway WRJD; Chin JW; Welch M; Bernardes GJL*; Spring DR
Chem. Sci. 20178, 3871–3878

67. A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages
Pereira MMA; Mahú I; Seixas E; Martinéz-Sánchez N; Kubasova N; Pirzgalska RM; Cohen P; López M; Bernardes GJL*; Domingos AI
Nat. Commun. 2017, 8, 14967

66. Vinyl ether–tetrazine pair for the traceless release of alcohols in cells
Jiménez-Moreno E; Guo Z; Oliveira BL; Albuquerque IS; Kitowski A; Guerreiro A; Boutureira O; Rodrigues T; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2017, 56, 243–247

65. Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells
Cal PMSD; Sieglitz F; Santos FMF; Carvalho CP; Guerreiro A; Bertoldo JB; Pischel U; Gois PMP; Bernardes GJL*
Chem. Commun. 201753, 368–371

64. Trends in therapeutic drug conjugates for bacterial diseases: a patent review
Cal PMSD; Matos MJ; Bernardes GJL*
Expert Opin. Ther. Pat. 2016, 27, 179–189

63. Antibody-drug conjugates: The missing link
Rodrigues T; Bernardes GJL*
Nat. Chem. 2016, 8, 1088–1090

62. A minimal, unstrained S-allyl handle for pre-targeting Diels–Alder bioorthogonal labelling in live cells
Oliveira BL, Guo Z; Boutureira O; Guerreiro A; Jiménez-Osés G; Bernardes GJL*
Angew. Chem. Int. Ed. 2016, 55, 14683–14687

61. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents
Bernardim B; Cal PMSD; Matos MJ; Oliveira BL; Martínez-Sáez N; Albuquerque IS; Corzana F; Burtoloso ACB; Jiménez-Osés G; Bernardes GJL*
Nat. Commun. 2016, 7, 13128

60. Bioorthogonal strategy for bioprocessing of specific-site-functionalized enveloped influenza-virus-like particles
Carvalho SB; Freire JM; Moleirinho MG; Monteiro F; Gaspar DMD; Castanho MARB; Carrondo MJT; Alves PMA; Bernardes GJL*; Peixoto C
Bioconjugate Chem. 2016, 27, 2386–2399

59. Unveiling (-)-Englerin A as a modulator of L-type calcium channels
Rodrigues T; Sieglitz F; Somovilla VJ; Cal PMSD; Galione A; Corzana F; Bernardes GJL*
Angew. Chem. Int. Ed. 2016, 55, 11077–11081

58. Tn antigen mimics based on sp2-iminosugars with affinity for an anti-MUC1 antibody
Fernández EMS; Navo CD; Martínez-Sáez N; Gonçalves-Pereira R; Somovilla VJ; Avenoza A; Busto JH; Bernardes GJL; Jiménez-Osés G; Corzana F; García Fernández JM; Mellet CO; Peregrina JM
Org. Lett. 2016, 18, 3890–3893

57. Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation
Faustino H; Silva MJSA; Veiros LF; Bernardes GJL; Gois PMP
Chem. Sci. 2016, 7, 5052–5058

56. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents
Rodrigues T; Sieglitz F; Bernardes GJL*
Chem. Soc. Rev. 2016, 45, 6130–6137

Emerging Investigators Issue 2016
See contributors’ profile in : Chem. Soc. Rev. 2016, 45, 6089–6092

55. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry
Akkapeddi P; Azizi S-A; Freedy A; Cal PMSD; Gois PMP; Bernardes GJL*
Chem. Sci. 2016, 7, 2954–2963

54. Urban endocrine disruptors targeting breast cancer proteins
Montes-Grajales D; Bernardes GJL*; Olivero-Verbel JT
Chem. Res. Toxicol. 2016, 29, 150–161

53. Site-selective protein-modification chemistry for basic biology and drug development
Krall N; da Cruz FP; Boutureira O; Bernardes GJL*
Nat. Chem. 2016, 8, 103–113

Highlighted in Nat. Chem. 2016, 8, 91

52. Sulfur-limonene polysulfide: A material synthesized entirely from industrial waste and its use in removing toxic metals from water and soil
Crockett MP; Evans AM; Worthington MJH; Albuquerque IS; Slattery AD; Gibson CT; Bernardes GJL, Chalker JM
Angew. Chem. Int. Ed. 2016, 55, 1714–1718

Selected as a Hot Paper.
Highlighted in Chem. Eng. News, November 2, 2015

51. An N-acetyl cysteine ruthenium tricarbonyl conjugate enables simultaneous release of CO and ablation of ROS species
Seixas JD; Chaves-Ferreira M; Montes-Grajales D; Gonçalves AM; Marques AR; Saraiva LM; Olivero-Verbel J; Romão CC; Bernardes GJL*
Chem. Eur. J. 2015, 21, 14708–14712

Selected as a Hot Paper

50. An artificial CO-releasing metalloprotein built by histidine-selective metallation
Albuquerque IS; Jeremias HF; Chaves-Ferreira M; Matak-Vinkovic D; Boutureira O; Romão CC; Bernardes GJL*
Chem. Commun. 2015, 51, 3993–3996

49. Advances in chemical protein modification
Boutureira O; Bernardes GJL*
Chem. Rev. 2015, 115, 2174–2195

48. Spontaneous CO release from RuII(CO)2-protein complexes in aqueous solution, cells and mice
Ferreira MC; Albuquerque IS; Matak-Vinkovic D; Coelho AC; Carvalho SM; Saraiva LM; Romão CC; Bernardes GJL*
Angew. Chem. Int. Ed. 2015, 54, 1172–1175

47. Collagen labelling with an azide-proline chemical reporter in live cells
Amgarten B; Rajan R; Martínez-Sáez N; Oliveira BL; Albuquerque IS; Reid DG; Brooks RA; Duer MJ; Bernardes GJL*
Chem. Commun. 2015, 51, 5250–5252

Emerging Investigators Issue 2015

46. Synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins
Salvadó M; Amgarten B; Castillón S; Bernardes GJL*; Boutureira O
Org. Lett. 2015, 17, 2836–2839

45. Deciphering the non‐equivalence of serine and threonine O‐glycosylation points: Implications for molecular recognition of the Tn antigen by an anti‐MUC1 antibody
Martínez-Sáez N; Castro-López J; Valero-González J, Madariaga D; Compañón I; Somovilla VJ; Salvadó M; Asensio JL; Jiménez-Barbero J; Avenoza A; Busto JH; Bernardes GJL; Peregrina JM; Hurtado-Guerrero R; Corzana F
Angew. Chem. Int. Ed. 2015, 54, 9830–9834

44. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation
Lira-Navarrete E; de las Rivas M; Compañón I; Pallarés MC; Kong Y; Iglesias-Fernández J; Bernardes GJL; Peregrina JM; Rovira C; Bernadó P; Bruscolini P; Clausen H; Lostao A; Corzana F; Hurtado-Guerrero R
Nat. Commun. 2015, 6, 6937

43. Peptide anchor for folate-targeted liposomal delivery
Nogueira E; Mangialavori IC; Loureiro A; Azoia NG; Sárria MP; Nogueira P; Freitas J; Härmark J; Shimanovich U; Rollett A; Lacroix G; Bernardes GJL, Guebitz GM; Herbert H; Moreira A; Carmo AM; Rossi JPFC; Gomes AC; Preto A; Cavaco-Paulo A
Biomacromolecules 2015, 16, 2904–2910

42. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells
Loureiro A; Nogueira E; Azoia NG; Sárria MP; Abreu AS; Shimanovich U; Rollet A; Härmark J; Hebert H; Guebitz G; Bernardes GJL; Preto A; Gomes AC; Cavaco-Paulo A
Colloids Surf. B 2015, 135, 90–98

41. Enhancing methotrexate tolerance with folate tagged liposomes in arthritic mice
Nogueira E; Lager F; Le Roux D; Nogueira P; Freitas J; Charvet C; Renault G; Loureiro A; Almeida CR; Ohradanova-Repic A; Machacek C; Bernardes GJL; Moreira A; Stockinger H; Burnet M; Carmo AM; Gomes AC; Preto A; Bismuth G; Cavaco-Paulo A
Biomed. Nanotechnol. 2015, 11, 2243–2252

40. Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors
Loureiro A; Bernardes GJL*; Shimanovich U; Sárria MP; Nogueira E; Preto A; Gomes AC; Cavaco-Paulo A
Nanomedicine 2015, 11, 1077–1083

39. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO
Seixas JD; Santos MFA; Mukhopadhyay A; Coelho AC; Reis PM; Veiros LF; Marques AR; Penacho N; Gonçalves AML; Romão MJ; Bernardes GJL; Santos-Silva, T; Romão CC
Dalton Trans. 2015, 44, 5058–5075

38. Functionalized protein nanoemulsions by incorporation of chemically modified BSA
Loureiro A; Abreu AS; Sárria MP; Figueiredo MCO; Saraiva LM; Bernardes GJL; Gomes AC; Cavaco-Paulo A
RSC Adv. 2015, 5, 4976–4983

37. Highlights from the 49th EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2014
Bernardes GJL*; Lawrence AL
Chem. Commun. 2014, 50, 10752–10757

36. Cysteine selective reactions for antibody conjugation
Cal PMSD; Bernardes GJL*; Gois PMP
Angew. Chem. Int. Ed. 2014, 53, 10585–10587

35. Carbon-monoxide releasing molecules for the delivery of therapeutic CO in vivo
García-Gallego S; Bernardes GJL*
Angew. Chem. Int. Ed. 2014, 53, 9712–9721

34. Protein micro and nano capsules for biomedical applications
Shimanovich U; Bernardes GJL*, Knowles TJ; Cavaco-Paulo A
Chem. Soc. Rev. 2014, 43, 1361–1371

33. Highlights from the 48th EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2013
Bernardes GJL*
Chem. Commun. 2013, 49, 8578–8582

32. Synthetically defined glycoprotein vaccines: Current status and future directions
Adamo D; Nilo A; Castagner B; Boutureira O; Berti F; Bernardes GJL*
Chem. Sci. 2013, 4, 2995–3008

EMBO Fellowhip with Prof. Dario Neri

31. A small molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors
Krall N; Pretto, F; Decurtins W; Bernardes GJL; Supuran CT; Neri D
Angew. Chem. Int. Ed. 2014, 53, 4231–4235

30. Curative properties of non-internalizing antibody-drug conjugates based on Maytansinoids
Perrino E; Steiner M; Krall N; Bernardes GJL; Pretto F; Casi G; Neri D
Cancer Res. 2014, 74, 2569–2578

29. Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature
Steiner M; Hartmann I; Perrino E; Casi G; Brighton S; Jelesarov I; Bernardes GJL*; Neri D
Chem. Sci. 2013, 4, 297–302

28. Site-specific chemical modification of antibody fragments with traceless cleavable linkers
Bernardes GJL; Steiner M; Hartmann I; Neri D; Casi G
Nat. Protoc. 2013, 8, 2079–2089

27. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format”
Zuberbühler K; Casi G; Bernardes GJL; Neri D
Chem. Commun. 2012, 48, 7100–7102

26. A traceless vascular targeting antibody-drug conjugate for cancer therapy
Bernardes GJL; Casi G; Trüssel S; Hartmann I; Schwager K; Scheuermann J; Neri D
Angew. Chem. Int. Ed. 2012, 51, 941–944

Very Important Paper (VIP).
Highlighted in Chimia 2012, 66, 130; ETH Life – “Starving Cancer”

Group Leader at Alfama Lta.

25. Generation of liver specific carbon monoxide-releasing molecule (CO-RM) as drug candidates for the treatment of acute liver injury: targeting of CO-RMs to the liver
Marques AR; Kromer L; Gallo DJ; Penacho NM; Rodrigues SS; Seixas JD; Bernardes GJL; Reis PM; Otterbein SL; Ruggieri RA; Gonçalves ASG; Gonçalves AML; De Matos MN; Bento I; Otterbein LE; Blättler WA; Romão CC
Organometallics 2012, 31, 5810–5822

24. Developing drug molecules for therapy with carbon monoxide
Romão CC; Seixas JD; Blättler WA; Bernardes GJL*
Chem. Soc. Rev. 2012, 41, 3571–3583

23. A novel CO-releasing molecule fully protects mice from severe malaria
Pena AC; Penacho N; Mancio da Silva L; Neres R; Seixas JD; Fernandes AC; Romão CC; Mota MM; Bernardes GJL*; Pamplona A
Antimicrob. Agents Chemother. 2012, 56, 1281–1290

22. Towards improved therapeutic CORMs: Understanting the reactivity of CORM-3 with proteins
Santos-Silva T; Mukhopadkyay A; Seixas JD; Bernardes GJL; Romão CR; Romão MJ
Curr. Med. Chem. 2011, 18, 3361–3366

21. CORM-3 reactivity towards proteins: The crystal structure of a Ru(II) dicarbonyl-lysosyme complex
Santos-Silva T; Mukhopadkyay A; Seixas JD; Bernardes GJL*; Romão CR; Romão MJ
J. Am. Chem. Soc. 2011, 133, 1192–1195

Marie-Curie Fellowship with Prof. Peter Seeberger

20. Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting
Bernardes GJL; Kikkeri R; Maglinao M; Laurino P; Collot M; Hong SY; Lepenies B; Seeberger PH
Org. Biomol. Chem. 2010, 8, 4987–4996

19. Combined approaches to the synthesis and study of glycoproteins
Bernardes GJL; Castagner B; Seeberger PH
ACS Chem. Biol. 2009, 4, 703–713

D.Phil. with Prof. Ben Davis

18. Precise probing of residue roles by post-translational β,γ-C,N aza-Michael mutagenesis in enzyme active sites
Dadová J; Wu K-J; Isenegger PG; Errey JC; Bernardes GJL; Chalker JM; Raich K; Rovira C; Davis BG
ACS Cent. Sci. 2017, 3, 1168–1173

17. Post-translational mutagenesis: a chemical strategy for exploration of protein side-chain diversity
Wright TH; Bower BJ; Chalker JM; Bernardes GJL; Wiewiora R; Ng WL; Raj R; Faulkner S; Vallée MRJ; Phanumartwiwath A; Coleman OD; Thézénas ML; Khan M; Galan SRG; Lercher L; Schombs MW; Gerstberger S; Palm-Espling ME; Baldwin MJ; Kessler BM; Claridge TDW; Mohammed S; Davis BG
Science 2016, 354, 597

Highlighted in Science 2016, 354, 553–554; Chem. Eng. News, September 26, 2016Nat. Methods 2016, 13, 907

16. Rationally designed short polyisoprenol-linked PglB substrates for engineered polypeptide N-glycosylation
Liu F; Vijayakrishnan B; Faridmoayer A; Taylor TA; Parsons TB; Bernardes GJL; Kowarik M; Davis BG
J. Am. Chem. Soc. 2014, 15, 566–569

15. SeS-linked homogeneous glycopeptides and glycoproteins: Synthesis of human hepatic ‘Se-metabolite A’
Boutureira O; Bernardes GJL; Fernández-González M; Davis BG
Angew. Chem. Int. Ed. 2012, 51, 1432–1436

14. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars
Boutureira O; Bernardes GJL; D’Hooge F; Davis BG
Chem. Commun. 2011, 47, 10010–10012

13. Methods for the conversion of cysteine to dehydroalanine on peptides and proteins
Chalker JM; Gunnoo SB; Boutureira O; Gerstberger SC; Fernández-González M; Bernardes GJL; Griffin L; Hailu H; Schofield CJ; Davis BG
Chem. Sci. 2011, 2, 1666–1676

Featured on the cover

12. A “tag-and-modify” approach to site-selective protein modification
Chalker JM; Bernardes GJL; Davis BG
Acc. Chem. Res. 2011, 44, 730–741

11. Site-selective traceless Staudinger ligation for glycoprotein synthesis reveals scope and limitations
Bernardes GJL; Linderoth L; Doores KJ; Boutureira O; Davis BG
ChemBioChem 2011, 12, 1383–1386

10. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates
Grayson EJ; Bernardes GJL; Chalker JM; Boutureira O; Koeppe JR; Davis BG
Angew. Chem. Int. Ed. 2011, 50, 4127–4132

9. Site-selective chemoenzymatic construction of synthetic glycoproteins using endoglycosidases
Fernández-González M; Boutureira O; Bernardes GJL; Chalker JM; Young MA; Errey JC; Davis BG
Chem. Sci. 2010, 1, 709–715

8. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins
Boutureira O; D’Hooge F; Fernández-González M; Bernardes GJL; Sánchez-Navarro M; Koeppe JR; Davis BG
Chem. Commun. 2010, 46, 8142–8144

Featured on the cover

7. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology
Chalker JM; Bernardes GJL; Lin AY; Davis BG
Chem. Asian J. 2009, 4, 630–640

6. Allyl sulfides are priviliged substrates in aqueous olefin cross-metathesis: Application to site-selective protein modification
Lin AY; Chalker JM; Floyd N; Bernardes GJL; Davis BG
J. Am. Chem. Soc. 2008, 130, 9642–9643

Highlighted in Chem. Eng. News, July 14, 2008; Nat. Chem. Biol. 2008, 4, 527; Chemistry World 2008, 5, 20; Faculty of 1000 Biology

5. Chemical site-selective prenylation of proteins
Gamblin DP; van Kasteren SI; Bernardes GJL; Chalker JM; Oldham NJ; Fairbanks AJ; Davis BG
Mol. BioSyst. 2008, 4, 558–561

4. Facile conversion of cysteine and alkylcysteines to dehydroalanine: Versatile and switchable access to functionalized proteins
Bernardes GJL; Chalker, JM; Errey JC; Davis BG
J. Am. Chem. Soc. 2008, 130, 5052–5053

Highlighted in Nat. Chem. Biol. 2008, 4, 527–528; Chem. Eng. News, March 31, 2008; Chemistry World2008, 5, 20; Chem.Commun. 2008, 6441

3. From disulfide- to thioether-linked glycocoproteins
Bernardes GJL; Grayson EJ; Thompson S; Chalker JM; Errey JC; Oualid FE; Claridge TDW; Davis BG
Angew. Chem. Int. Ed. 2008, 47, 2244–2247

Highlighted in Angew. Chem. Int. Ed. 2008, 47, 5496–5499

2. A trisulfide-linked glycoprotein
Bernardes GJL; Marston JP; Batsanov AS; Howard JAK; Davis BG
Chem. Commun. 2007, 3145–3147

1. The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation
Bernardes GJL; Gamblin DP; Davis BG
Angew. Chem. Int. Ed. 2006, 45, 4007–4011